
SOFTWARE-BASED MONITORING AND
ANALYSIS OF A USB HOST CONTROLLER SUBJECT TO 
ELECTROSTATIC DISCHARGE

Presenter: Natasha Jarus

Authors: Natasha Jarus, Antonio Sabatini, Pratik Maheshwari, and Dr. Sahra Sedigh Sarvestani

June 10, 2020



2 of 22

INTRODUCTION

Natasha Jarus

I am a PhD candidate in computer engineering at the 

Missouri University of Science and Technology. My 

work focuses on modeling and metamodeling 

complex systems to understand and improve their 

dependability.

This research has been done in collaboration with 

Samsung, Ford, and the Missouri S&T Electromagnetic 

Compatibility Lab.



3 of 22

INTRODUCTION

 Static electricity discharge can cause:

 Screen glitches

 Program crashes

 Erroneous software operation

 System resets

 Permanent hardware failures

 Dependable cyber-physical systems must be 

robust to the effects of these shocks

 The effects of these shocks on system hardware 

are much better understood than they are for 

software operation



4 of 22

MONITORING ESD

 Hardware instrumentation

 Can provide a precise understanding of how Electro-Static Discharge (ESD) entered and 

propagated through the system

 Is difficult to scale up to instrumentation for the whole system

 Is infeasible to implement for field tests on commercially available equipment

 Tests are often implemented using custom low-level software rather than a typical system 

software load

 Software instrumentation

 Is often focused on user-visible faults such as display flicker and program crashes

 Investigates lower-level faults, such as bit errors in registers, and is usually done with low-level 

code that cannot coexist with other software

 The software executing on a system can affect its immunity to ESD



5 of 22

RESEARCH OBJECTIVES

 Improve software instrumentation for low-level faults

 Achieve software fault detection on consumer hardware in field use conditions

 Enable lightweight real-time monitoring and failure recovery

 Create a generic approach that applies to many system peripherals

 Validate and demonstrate by applying to USB devices



6 of 22

MONITORING APPROACH

 The USB Host Controller connects to the USB bus and performs low-level USB host 

device duties

 Responsibilities:

 connecting and disconnecting devices

 configuring power delivery

 communicating control and data signals between the system’s memory and the USB devices



7 of 22

MONITORING APPROACH

 The Host Controller exposes a set of control registers to the host CPU

 These registers conform to Open Host Controller Interface specifications

 We record snapshots of these register values to approximate the HC’s internal 
operation, presuming that:

 Certain sequences of values will be common during typical system operation

 When exposed to ESD, we may observe anomalous values or sequences of values

 Our goal is to infer ESD exposure from anomalies in recorded traces of these 

snapshots



8 of 22

INITIAL INSTRUMENTATION
APPROACH

 Directly read the memory-mapped Host Controller registers

 Modified an open-source tool, Myregrw, to suit our needs

 System driver that reads memory addresses on command

 User program that sends control signals to driver and records values

 Read values continuously while exposing the system to ESD

 Problem: register values remained mostly constant

 This approach failed to capture even typical Host Controller operation. Why?



9 of 22

INITIAL INSTRUMENTATION
APPROACH

 We empirically determined the sampling rate of Myregrw on our system to be 342 Hz

 Assuming that, in the worst case, the register values change at 400 MHz, we have a 

0.000856% chance of observing a given value

 Furthermore, Myregrw is racing the Host Controller driver to read the values written by 

the host controller before its driver overwrites them

 A new approach was needed to address both of these issues

Myregrw 

snapshot

ESD 

event

Driver overwrites 

register values

Myregrw 

snapshot



10 of 22

IMPROVED INSTRUMENTATION APPROACH

 Instrument the USB Host Controller driver to record the register 

values at the start of each function

 Gives an exact picture of what the driver “sees” the host 

controller doing

 Requires minimal modifications to the driver code

 Values are recorded using the standard kernel logging 

framework

 Overhead is low: about 10% with a naive logging approach



11 of 22

ANALYSIS APPROACH

 Monitor system operation both without interference and while exposed to ESD

 Baseline logs capture ‘normal’ system behavior without interference

 ESD-exposed logs capture normal and abnormal system behavior

 These log files consist of sequences of snapshots of register values

 We refer to a log as an execution trace

 We refer to a snapshot of the registers’ values as a state



12 of 22

ANALYSIS APPROACH

 Identify and coalesce duplicate states in each trace to construct an execution graph

 We also record the path through the graph taken by the execution trace

 Identify and coalesce duplicate states in each graph to construct a global execution 

graph

 We ignore certain registers whose values are memory addresses set by the kernel memory allocator, as 

they do not reflect the operation of the Host Controller itself

 Execution paths through the global graph are recorded for each trace

 We can then identify states and transitions unique to ESD-exposed execution traces



13 of 22

CASE STUDY

 System: FriendlyArm mini2440

 400 MHz ARM Samsung CPU

 Running Linux as the operating system

 A flash drive is attached and a script runs to copy data to and 

from it

 Several ESD injections were performed:

 Electric field coupling probe: ESD pulses between 500 V and 5.5 kV

 Magnetic field coupling probe: ESD pulses between 500 V and 8 kV

 The system proved to be more immune to magnetic field coupling, hence 

the higher pulse voltage

 Probes were positioned over the USB port or the USB Host Controller IC



14 of 22

RESULTS: REGISTERS

 The HcInterruptEnable and HcInterruptDisable registers control whether 

the various hardware interrupts on the Host Controller are enabled or disabled

 When read, these registers ought to be duplicates of each other

 Baseline data confirms the host controller follows this specification

 However, under ESD exposure, slight dissimilarities are observed: bit 7 sometimes disagrees



15 of 22

RESULTS: REGISTERS

 The HcInterruptStatus register records whether an interrupt has been triggered

 When exposed to ESD, we observe certain interrupts are more likely to be triggered:

 Frame number counter overflows (marked †)

 Hub status change events (marked *)



16 of 22

RESULTS: REGISTERS

 The HcControl register allows the Host Controller driver to control what the Host 

Controller processes next

 Under ESD exposure, we observe

 Increased control frame processing (0x93) and decreased bulk data processing (0xa3)

 Increased number of new control and data frames (0x83)

 It is possible that ESD is disrupting the bus’s operation, resulting in more status change frames and more 

retransmissions of corrupted data frames



17 of 22

RESULTS: REGISTERS

 The HcRhPortStatus0 register 

reports the status of the port we plugged 

the USB device into during tests

 Values where the port status remains 

unchanged (⋄) occur less often and port 

enable/disable events (†) occur more 

often

 Furthermore, port resets (*) are only 

observed in ESD-exposed traces



18 of 22

RESULTS: EXECUTION GRAPHS

 The unified execution graph of two traces, one baseline 

and one ESD-exposed, is shown to the right

 Green states appear in baseline traces; red states 

appear only in ESD-exposed traces

 We see several potential effects of ESD:

1 Transitions from baseline states to non-baseline states

2 Transitions between non-baseline states

3 Transitions between baseline states not present in baseline traces

4 Transitions from non-baseline states to baseline states



19 of 22

RESULTS: EXECUTION GRAPHS

 We also observe differences in the distribution of state occurrences between baseline 

and ESD-exposed traces

 During normal operation, we expect to see:

 A large group of states revisited frequently — for example, the main control loop

 A short tail of ‘exceptional’ states that handle unusual events

 If operation were disturbed by ESD, we would expect:

 Fewer common states

 A much longer tail of unusual or anomalous states

 These assumptions are confirmed by

our data



20 of 22

CONCLUSIONS

 We have developed a methodology for studying the effects of ESD on system 

peripherals using software instrumentation

 Our software probe records traces of a peripheral’s control registers

 This approach approximates the unobservable internal behavior of the peripheral based 

on its behavior that is observable to the host CPU

 The implementation has low overhead and can be used in field tests

 We demonstrated this technique by applying it to a USB Host Controller

 We were able to observe differences in system operation when the system was exposed 

to ESD



21 of 22

CONCLUSIONS

 We can predict, based on the operation of the system, whether it has experienced the 

effects of ESD

 This allows us to identify which components on a system have experienced ESD and may 

require repair or better shielding

 Software may be able to determine that an ESD event has occurred and to automatically 

recover from resulting errors

 This would enable systems to continue operating in hostile environments 

 We have determined that a naive classification approach can detect ESD events in a 

system execution trace with 88% accuracy

(work under review for IEEE Transactions on Electromagnetic Compatibility)



22 of 22

FUTURE WORK

 Expand this approach to other peripherals, enabling full-system monitoring of ESD effects

 Characterize the effects of ESD at specific injection locations, potentially allowing us to 

trace ESD through the board based on observed operation

 Develop software that can anticipate and recover from ESD events


